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NATIONAL AERONAUTICS AND SPACE ADMINISTEATION

TECHNICAL NOTE D-1666

A GENERAL DIGITAL COMPUTER ANALYSIS OF

STATICALLY INDETERMINATE STRUCTURES I

By Paul H. Denke

SUMMARY

/L !
The application of high speed digital computers in the rational analysis of

statically indeterminate structures, and the significance of this application in

airframe design, are discussed.

The matrix formulation of the force method of analysis is reviewed, and the

programs which have been produced to generate the matrices and solve the equilib-

rium and continuity equations are described. These programs are general enough

to apply to any linear discrete structure.

Numerous comparisons between analysis and experimental results are presented.

In addition, applications of the programs in the production stress analysis of a

large commercial jet transport are described. Applications to thermal stress

problems and low aspect ratio wings are also included.

iThis paper, which carried a Douglas Aircraft Company designation of

"Engineering Paper No. 834," was presented before a meeting of the Structures and

Materials Panel of the Advisory Group for Aeronautical Research and Development,

North Atlantic Treaty Organization, in Aachen, Germany_ September 17, 1959. Since

the proceedings of the above Panel meeting are not being published, arrangements

have been made with AGARD and the Douglas Aircraft Company for the release of this

paper in its original form by NASA to increase its availability.



NOTATION

In the following definitions, the term "analysis condition" means any com-

bination of external load, thermal deformation, support displacement, etc., tend-

ing to produce stress and deflection in the structure. The matrices are defined

in the order of their appearance in the analysis. Matrices which are not in the

llst are defined in the teKt.

Matrix

mpp - Imppi_

Definition of the Matrix Element

QiJ " the ith principal statically determinate force result-

ing from the redundants and the external loads in the Jth

analysis condition.

Qs - the ith subordinate statically determinate force re-
ij

sultlng from the redundants and the external loads in the Jth

analysis condition.

Xlj - the Ith principal redundant in the Jth analysis condi-

tion.

X

sij

ditlon.

_iJ " the ith principal external load in the Jth analysis

condition.

_sij - the ith subordinate external load in the Jth analysis

condition.

m - the component in the ith principal degree of freedom
PPiJ

of a unit value of the Jth principal statically determinate

force.

the ith subordinate redundant in the Jth analysis con-
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Matrix

_ m

ps PSlj

Definition of the Matrix Element

m _ the component in the ith principal degree of freedom

PSij

of a unit value of the jth subordinate statically determin-

ate force.

Px = the component in the ith principal degree of freedom

PPiJ

of a unit value of the Jth principal redundant.

Px = the component in the ith principal degree of freedom

PSij

Of a unit value of the Jth subordinate redundant.

Po - the component in the ith principal degree of freedom

PPiJ

of a unit value of the Jth principal external load.

Po = the component in the ith principal degree of freedom

PSij

of a unit value of the Jth subordinate external load.

m - the component in the ith subordinate statically de-

sPij

terminate degree of freedom of a unit value of the Jth prln-

cipal statically determlmlte force.

m = the component in t_e Ith subordinate statically de-
ssij

terminate degree of freedom of a unit value of the Jth sub-

ordinate statically determinate force.

Px - the component in the ith subordinate redundant de-

sPij

gree of freedom of a unit value of the Jth principal redun-

dant.

Px - the component in the ith subordinate redundant de-

sslj

gree of freedom of a unit value of the Jth subordinate redun-

dant.

Po _ the component in the ith subordinate external load

sPlJ

degree of freedom of a unit value of the Jth principal exter-

nal load.



Matrix

= Po.o..
Definition of th__eHatri______xElement

pOssl j - the component in the Ith subordinate external load

degree of freedom of a unit value of the Jth subordinate

external load.



INTRODUCTION

For many years, elementary methods of stress analysis were used almost ex-

clusively in the design of aircraft structures. These method_ involved a number

of assumptions, including especially the assumptions that plane sections of e-

longated members remained plane under the action of bending loads, and that, in

torque, sections were free to warp. In many parts of the airframe these assump-

tions were, and are, completely Justified by the nature of the structure and the

loading. In other places, the assumptions did not applys as at the roots of

wings, or in the regions of fuselage cutouts. In such areas, other assumptions,

conservative and often overlappfng to en_ure safety, were made. Occasionally a

more precise analysis was perfo_;_ but _uch occasions were rare.

Actually no other recourse %us possible, because the extensive use of pre-

cise methods required computing f_ilities which did not exist. Such facilitiea,

however, are now available. To appreciate the advance which has been made in

the art of computation, consider the fact that about twenty seconds are required

to multiply two seven digit numbers on a desk calculator, whereas a large auto-

matic computer can multiply lO, O00 pairs of such numbers per second. These fi-

gures represent an increase in computing power on the order of 200,000 : i. On

a cost basis, the expense of computing has decreased on the order of 5,000 : 1.

The introduction of matrix algebra into structural analysis has facilitated

calculations also, by converting what was formerly a complicated mathmatical pro-

blem Into a systematic procedure.

The result of these improvements is that the use of advanced methods in

stress analysis is now a practical undertaking. The question Is, to what extent

should these methods be applied.

Figure 1 shows the results of a test run at NASA on a cylindrical shell sup-

ported at one end on a rigid foundation, reinforced by circular rings, and carry-

ing a radial load at the free end. The figure shows the longitudinal tensile and

compressive stresses in the shell, as determined from test, as computed by ele-

mentary theory (My/I), and as com]_ut_,dby rigoro,,s m_thods. The fl_Jre shows t_t
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the _xximum bending stress at station _5 frame as computed by elementary theory

is in error by a ratio of almost 3.6 to I, whereas the error resulting from the

rigorous computation is only I0_,. Notice also that a secondary m_x_mum occurs

at the so called "neutral axis" where the stress is supposed to be zero. Even

at tbe rigid support, where the section is forced to re_in plane, the error in

My/I is still 2.2 to I. This structure is not an isolated case; it is typical

of many parts of the airframe, and there are places in actual structure where

errors resultin6 from elementary analysis may be larger, because of the exis-

tence of cutouts or other conditions.

The results of Figure i are well confirmed, inasmuch as they were obtained

independently by Jensen of the Gruman Aircraft Company and published by him in

reference 5. These results cannot be ignored or dismissed; they are facts, and

must be considered in any assessment of structural analysis methods.

What is the significance of the errors involved in the use of elementary

methods?

Structure analyzed by rough methods and not thoroughly checked by a care-

ful testing program can contain large stress concentrations. These concentra-

tions can produce metal fatigue and cause the structure to have a short llfe.

Much importance has been attached, Justifiably, to the effects of small scale

stress concentrations around bolt holes, tool marks, small radius fillets, etc.,

in reducing fatigue life. Perhaps not enough emphasis has been given to the im-

portance of larg_____escal__estressconcentrations that are not revealed by rough

analysis _athods. Obviously, an unconservative error of 3 : 1 or more in the

computed stress, if undetected, must lead to a short lived structure. In such

a case no amount of attention to design details, important as they are, can pro-

duce a fatigue resistant component. The possibility exists that many of the fati-

gue troubles experienced in the operation of present day aircraft have resulted

from the use of elementary stress analysis methods where they did not apply.

These large scale stress concentrations can also cause failure under the

action of a single load, even though yielding tends to alleviate the condition.

The consequences of such a failure need not be emphasi:ed.

If, as is nol;:mlly the case, a thorough testing program is undertaken, th,_n



all stress concentrations of importance can be discovered and eliminated. How-

ever the cost of building, instrumenting, and testing full scale components is

ve_ high, even compared to the rental of a large computer. This testing ex-

pense continually increases as the demand for higher performance vehicles re-

quires t_ working of metals to higher operating stresses, the use of unusual

configurations, and the ability to withstand severe environmental conditions.

The testing of large components and entire airframes at hlgh temperature will be

an especially expensive procedure, because of the large power requirements to

heat, as well as to cool, the specimen; the complicated apparatus needed for tem-

perature control; the specialized instrLunentation, such as high temperature strain

gauges required for measurements; and the additional engineering required to plan

ti_ test. The new methods of stress analysis can play a very important part in

h_Iplng to keep these testing expenditures within reasonable limits.

Finally, the financial risk involved in a large aircraft project is suffi-

cient to warrant a double check through both test and accurate analysis to make

sure that no defective conditions exist.

The conclusion is drawn, therefore, that the extensive use of advanced digi-

tal methods of stress analysis is Justified at the present tlmep and that these

methods will become even more important in the future.

SCOPE OF THE PAPER

The paper contains a general description of the method and sections on the

matrix formulation I computer programs, analysis procedures, comparisons with test

results, and applications. For a non-technical description of the work, the sec-

tions on the method, test results, and applications are recommended.
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THE METHOD

In the following discussion, the term "discrete structure" denotes a struc-

ture composed of a finite number of members connected at a finite number of

Joints. The term "linear structure" denotes a structure for which the relationT

ships between external load_ support displacement, internal force I and deflec-

tion are linear.

Almost every procedure for the analysis of statically indeterminate struc-

tures can be classified as either a "force" or a "displacement" method. In the

force method, the unknown internal forces are calculated first_ the displace-

manta second. In the displacement method, the displacements are calculated be-

fore the forces. Argyrie Ill* has discussed the two methods and shown the exi|t-

ence of an analogy between them.

The capabilities of the digital computer allow either of the basic methods

to be programmed in its simplest and most general form. In the past, a great

many variations of the basic methods have been employed. One reason for such

diversity has been the need to avoid extensive calculation by tailoring thQ

method to fit the structure. Howeverp the development of the digital computer

has altered the situation. Extensive calculations now can be performed rapidly

and economically. Therefore t a return to basic principles is feasible and,

furthermore, the cpmputer _ designed to utilize these principles can be

8eneral in its applications.

Some of the advantages to be gained from a basic, general approach are re-

duced progranm_ng time, reduced training of personnel, the added insight that

results from the application of basic principles, and the reduction of errorl

that results from familiarization in the use of a single method.

The method of analysis described in this paper is a matrix formalation of

the equilibrium equations and the Maxwell-Mohr equations for statically indeter-

minate structures. This formulation was presented at a meeting of the Second

U.S. Congress of Applied Mechanics in June1 1954 [2]. The use of matrix algebra

is now recognized as essential in preparing the structural analysis problem for

the computer. Langefors [3] and Wehle and Lansing [_] had previously published

Numerals in brackets indicate references.
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matrix formulations of Castigliano's Theorem. However, the Maxwell-Mohr equa-

tions are a little simpler in form because they do not involve partial deriva-

tives. Also, the applications to thermal stress and nonlinear problems are

more straight-forward.

In the Maxwell-Mohr method_ which is a force method, the structure is cut

to create a statically determinate structure or basic system. The members of

the statically determinate structure maybe simple elements, or they may them-

selves be complicated statically indeterminate structures. (In fact, even so

called simple elements are actually infinitely redundant). After cutting, values

of the redundants are chosen such that the deflections at the cuts resulting

from external loads, support displacements t element thermal and other deforma-

tions s and from the redundants, are zero. The redundants can be either forces

existing at the cuts, or linearly independent combinations of these forces I as

Argyris has pointed out _l]. The conditioning of the simultaneous equations in-

volved in solving for the redundants can be improved either by cutting on the

basis of physical reasoning so that the forces at the cuts are small compared

to other forces in the structure, or by linearly transforming the redundants

on the basis of the known orthogonal solution of a geometrically regular struc-

ture which bears a resemblance to the structure under consideration. The use of

statically indeterminate substructures as elements, which have been previously

analyzed, also improves the conditioning.

The present method comprising the equilibriuman@Maxwell-Mohr equations

and the associated digital computer program is applicable to any linear discrete

structure, and through Iterative techniques to certain nonlinear structures as

well. The method applies not only to various parts of the airframe structure

such as the wing-fuselage intersection, the tail-fuselage intersection, the cock-

pit enclosure, the area surrounding a fuselage cut-out, a low aspect ratio wing,

and so on, but also to many types of structures encountered in civil engineering

practice.

This generality was not designed into the method to show the versatility

of the computer, but because Generality is necessary if the analyst is to have

the tools that he needs to deal with the problems arising in airframe and missile

design. Thus, many important airframe components have no recognizable geometric
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regularity such as would permit the use of simplifying but restrictive assump-

tions, or the application of results from elasticity theory. Figures 2a and 2bp

which show a pylon-wing intersection, illustrate a structure of this kind.

MATRIX FORMULATION

The matrix formulation is preceded by a set of equations in vector notation

which permit the calculation of the elements of the equilibrium matrices.

Equilibrium equations for a statically determinate structure are written by

setting the sum of components of forces in a given direction and the sum of mo-

ments about a given axis equal to zero. In general t such a set of equations can

be expressed in matrix notation in the form MQ + P _ = O. In this equation, Q

is a matrix of unknown generalized forces where the term "generalized force" is

understood to mean either a force or a moment. The coefficients of the unknown

forces Q are contained in M. These coefflcients t called generalized components_

are force or moment components in certain directions or about certain axes of

unit values of the generalized forces.

The matrix _ is a matrix of external loads acting on the structure 2 while P

contains generalized components of unit values of these external loads.

The structure to be analyzed is broken into free bodies, and equilibrium

equations are written for each body. The equations are numbered consecutively

beginning with one, and to each equilibrium equation there is assigned a corres-

pondingly numbered unit vector coinciding with the direction in which forces are

summed or about which moments are taken. These vectors are called degree of free-

dom vectors, because only as many of them may be assigned to a free body as the

body has degrees of freedom if the corresponding equations are to be independent.

Figure 3 shows a free body diagram with forces and degree of freedom vectors re-

presenting equations of equilibrium. Degree of freedom vectors are shown dotted.

The existence of two kinds of equilibrlm equations and two kinds of general-

ised forces means that there can be four kinds of generalized components. Equa-

tions l, 2, 3, and _ of Table 1 provide the method for calculati,_,, those quan-

tltIc_i. In these equations, Ti is a unit degree of freedom vector (either tr_.nn-

i_tir_al or rotational), and Fj is a unit generalized forc_ (olther a fo1(_ _r a
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moment). The symbol mij denotes the corresponding generalized uomponent. In the

rotation-force equation_ r i im a vector Joining the origin to any point on the

line of action of Ti_ and _j is a similar vector Joining the origin to any point

on the line of action of Fj. In equations (1) to (_)_ the frame of reference is

assumed to be a right-handed rectangular Cartesian coordinate systemp end rota-

tions and moments are represented by vectors according to the rlght-hand rule.

After the statically indeterminate structure is cutp three kinds of forces

are seen to be acting uponp or in_ the determinate structure. These forces are

the external loads, the redundants t and the unknown internal forcem_ referred to

TABLE i

SU_YL_Rr OF EQUATIONS

GENERALIZED FORCE COMPONENTS

Translation-force mij = Ti ' FS (1)

-

Translation-moment mij _ 0 (3)

Rotation-moment mij = Ti " Fj (4)

THE K TRANSFORMATION MATRICES

-i (5)
m -rosa rasp

Kx -1_x (6)
" -PXss sp

Ko " "Po -lPo (Z)
ss sp

COEFFICIENT MATRICES IN THE PRINCIPAL EQUILIBRIUM EQUATION

M - m +m K (8)
pp ps m

ll



Px " Px +px xa (9)
pp ps

Po " Po +Po Xo (1o)
pp pa

5TATICALLT DETERMINATE FORCES RESULTING FROM UNIT R_ AND UNIT EXTERNAL

LOADS

._ . a-1_ (_)

% . a-1 Po (12)

FORCE AND STATICALLT DETERMINATE REACTION MATRICES

fX = Nqx ÷ Hx (13) rDx = Nr qx

ro " "% + _o (z_) rDo . _ %

C_ - ro C_ (1_) r_ " _DoC_

REDUNDANTS

(16)

(17)

(18)

- _'_Drx (19)5xx x

. fT_o x (I_o + _o ) (20)

-i
x - -.Sxx (6xo_+SxT-5_)

ELEMENT FORCES AND STATICALLY DETERMINATE FORCES

5xT . fTX eT

(23)

(22)

r = _'x x + _'o_ (24)

Q - %x+%_ (2_)

DEFLECTIONS

n = (rTD +_>_ +¢_'__,o+v_ _+ c_'_._ (26)

12



or

- (FTD

hereafter as statically determinate forces. The redundants are also unknownp of

course, but the statically determinate forces resulting from unit values of the

redundants are calculated, and these results are used in the continuity analysis.

Calculating the statically determinate forces resulting from unit values of the

external loads is also expedient.

Each of the three sets of forces - external, redundant, and statically de-

terminate - is further divided into two subsets called principal and subordin-

ate forces. The subordinates are forces which can be expressed in terms of the

principals by a preliminary calculation performed on the machine,after which the

subordinate forces are eliminated from the problem. The principal forces are the

forces that remain. The purpose of this elimination is to conserve machine ca-

pacity.

The choice of subordinates shnuld be such that they can be expressed easily

in terms of their principals. For example, consider the shear panel of Figure 4.

The forces on this panel form a self-contained system, and any three can be writ-

ten in terms of the fourth. Thus Qsl = _ a/b, Qs2 = _' and Qs3 " Ql a/b. The

force _ is the principal, and Qsl' Qs2' and Qs3 are subordinates. By this device

often half of the forces can be eliminated from the problem.

The next step in the analysis, then, is to designate and number consecutlvely_

beginning with onep each of the following six sets of forces: principal and sub-

ordinate statically determinate force% redundants, and external loads. Matrices

of these forces are denoted respectively by the symbols Q, Qs' X, Xs, _, and _s"

Figure 3 illustrates a typical free body diagram with the forces numbered. On

this diagram t only statically determinate forces are shown. Redundants and ex-

ternal loads are shown on separate sheets to avoid confusion. Principal force

numbers are enclosed in parentheses; subordinate force numbers are not.

After the principal and subordinate forces are chosen, so-called subordinate

degree of freedom vectors corresponding to equations of equilibrium are assigned I

so that the subordinate forces can be calculated in terms of their principals.

13



These vectors are shown in the figure by dotted arrows with index n_nbers not en-

closed in parentheses. Finally, principal degree of freedom vectors are assigned

to permit the calculation of the princlp_ statically determinate forces.

principal degree of freedom vectors are indicated by dotted arrows with index

numbers enclosed in parentheses. In general, four sets of degree of freedom vec-

tors are assigned as follows: principal degrees of freedom, and subordinate

statically determinate, redundant, and external load degrees of freedom.

The equilibrium equations can now be written, in matrix notation, in terms

of the six sets of forces acting on the free bodies, as follows!

mpp mps Px Px Po Po
pp ps pp ps

m m
sp ss

Px Px
sp ss

Po Po
sp ss

Q

Qs

I

X
s

m --

. o (28)

The forces acting on the free bodies are contained in the poet multiplier;

the generalized components are contained in the premultiplier. The significance

of the partitions mpp, mps , etc., is given in detail in the table of notation.

All of the generalized components are computed by equations i, 2, 3, and _. The

null partitions in the generalized component matrix result from chooslng subordin-

ate forces in such a way that they always form small self-contained systems with

their principals.

Equation 28 is expanded as follows:

mppq+ sQs ÷p. X+px xs +po +Po #s " o (29)
pp ps pp ps

14



msp q + mss Qs

Px
sp

X+P x Xs
ss

Po _ * Po _s
sp ss

..0

,,,0

-0

. -1
Q m -/It m Q@

-S SS sp

-1
Xs = "Px Px X

ss sp

_s = "Po -I Po
ss sp

The matrices Km, Kx, and Ko are now defined according to equations 5, 6, and

7 of Table I.

"" Qs " %Q

X s = Kx X

_s " Ko_

Substituting these expressions into equation (29) gives

. _ x + _ : . o, (30)

where the matrices M, Px' and Po are defined by equations 8, 9, and I0 of Table I.

Equation (30) is the principal equilibrium equation.

, and Po , appearing in equations 5, 6,
Notice that the matrices mss , Pxss ss

and 7, must be nonsingular. This nonsingularity is obtained by proper choice of

subordinate degree of freedom vectors. As a matter of computing convenience, the

choice of these vectors should be such that the matrices mss , Pxss _ and Poss are

lower triangular, because in this event a very rapid computing program can be used

to solve the equations. Such a cholce is always easy to make, and it has the ad-

ditional advantage that a lower trian_ular matrix with nonzero elements everywhere

19



on the diagonal is nonsingular, and well-condltioned.

Taking X = I (the unit matrix) and _ = 0 (the null matrix) in equation (30)

leads to equation (ll) of Table l, where qx is a matrix of statically determinate

forces resulting from unit values of the redundants.

Taking X - 0 and _ - I leads to equation (12), where qo is a matrix of stati-

cally determinate forces resulting from unit values of the external loads.

Check degree of freedom vectors are assigned to various free bodies of the

structure so that additional check equations are generated. Such equations pro-

vide reliable verification of the calculations up to this stage.

After the equilibrium problem is solved and checked, two additional opera-

tions ere performed, before the continuity of th_ structure is restored. First,

all of the statically determinate forces, t_ reJ'_nd_ntz, and perhaps some of the

external loads, are grouped into a single set o_ for_, _alled element forces, to

facilitate calculating deflections. Seco_ tl_ statically determinate reactions

are grouped into a separate matrix, to permit calculating the effect of support

displacements.

Element forces are deflned in the following way: Consider any element of the

structure which Is capable of undergoing deformation s and therefore of contribut-

ing to the deflection of the structure as a whole. Both internal forces and ex-

ternal loads may act upon such an element, since the possibility of external loads

acting between Joints is not excluded. Certain forces acting on the element are

designated as element reactions. These element reactions may be internal forces

or fictitious forces, but they must be chosen in such a way that they are capable

of balancing the other forces applied to the element. The remaining internal

forces are designated as element forces. After element forces for the entire

structure are selected, they are numbered consecutively beginning with one.

For each element force there is a correspondlngelement defon_ation. An ele-

ment deformation is defined as the component of the displacement of an element

force, in the direction of the element force, when the element reactions are un-

displaced parallel to themselves.

16



Figure 5 shows a bending element, with element reactions (indicated thus|

)s element forces (Fl, F2, F3), and element deformations (el, e2P e3).

Other choices of element reactions, forces, and deformations are possible for

such an element.

The element deformations are given the same index numbers as the correspond-

Ing element forces; and a deformation is positive when it has the same direction

as a positive value of the corresponding force. The sign convention for element

forces is arbitrary, except that the choice of a sign convention which results in

negative off-diagonal flexibility factors (defined later) is not advisable.

Some of the element forces correspond to statically determinate forces_

others correspond to redundants and a few may correspond to external loads.

Therefore, the element forces can be written in terms of the statically determin-

ate forces, the redundants, and the external loads, as follows:

F - NQ ÷ ÷ H (31)
where F is a matrix of element forces.

If the element forces have been chosen in such a way that each one corres-

ponds exactly to a statically determinate force, a redundant, or an external load,

and such a choice should be made, then the matrices N, Hx, and H° contain l's and

O's, and there will be no more than one 1 in any row or column. Such matrlces are

called extractors, because their only function is to extract information from

other matrices.

Setting X = I and _ = 0 in equation (31) yields equation (iS) of Table I,

where f is a matrix of element forces resulting from unit values of the redun-
x

dants. SettlngX _ 0 and _ = I yields equation (1|4), where fo is a matrix of

element forces resulting from unit values of the extarnal loads.

In the Maxwell-Mohr method, deflections are calculated by applying unit dum-

my loads coinciding in position and direction with the desired deflections. In

the present formulation the assumption is made that a unit external load is ap-

plied to coincide with every _mch deflection. Therefore, a nmtrix fA can be ex-

tracted from fo' as in equation (15), where f& is a matrix of elephant forces

17



resulting from unit values of the dummy deflection loads, and CA is a suitable

extractor matrix.

Number the statically determinate reactions consecutively beginning with i.

Then the statically determinate reaction matrix RD can be extracted from the

statically determinate force matrix as follows:

RD = NrQ ,

where Nr is a suitable extractor. Setting X and _ equal to I and 0 in turn leads

to equations (16) and (17), where rDx and rDo are matrices of the statically de-

terminate reactions resulting from unit values of the redundants and external loads

respectively. A matrix rDd of statically determinate reactions resulting from unit

values of the dtumny deflection loads is extracted from rDo as in equation (18).

The essentials of the derivation of equations (19) to (26), inclusive, have

been given in reference 2. A feature of this derivation is that although it is

based on the conservation of energy, it does not involve elastic strain energy,

so that the deflection equations are immediately valid for arbitrary element de-

formations, including deformations resulting from thermal gradients, plasticity,

creep, etc. The derivation is also facilitated by the use of the notions of ele-

ment reactions, forces, and deformations, as defined above. However, the equations

have been generalized to include the effects of support (_splacements, the applica-

tion of external loads between Joints, and the calculation of deflections at points

between Joints.

The symbol D appearing in these equations denotes the flexibility matrix.

The elements of this matrix represent element deformations resulting from unit

values of element forces. For example, the flexibility coefficients for the beam

element of Figure 5 are as follows, if shear deformations are not considered:

DII = LIAE, D22 = L313EI, D23 = D32 = L212EI, D33 = LIEI,

where L, A, I, and E are the length, area, moment of inertia and modulus of elas-

ticity of the member.

The matrix DFo contains element de fomations resulting from external loads
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applied directly to the elements. If loads are applied only at Joints, then DFo

is null. Figure 6 shows the element of Figure 5, with an intermediate load.

The following elements of the DFo matrix can be derived by elementary methods:

2

DFolj - a cos (x/AE, DFo2j - a2 (L-a/3) sin _/2EI, DFo3j - a sin (*/2El

The matrix DAF contains displacements of dummy deflection loads acting direct-

ly upon the element_ resulting from unit v.._.iuer_of %.he element forces, when the

element reactions are not displaced parallel t,_._-..,.,._.._:v_°_._.Figure 7 shows the

element of Figure 5 with an intermediate dtm':_i <b:f!ec:;!on load. The elements of

DAF are as follows l

D_jI - b cos_/_,_j2 "b2(r.-b/S)sln(_/2_I,D=j3 - b2 sin_S/2EI•

The matrix D_ contains displacements of dummy deflection loads acting direct-

ly upon the element, resulting from unit external loads acting directly upon the

element_ when the element reactions are not displaced. Figure 8 shows a bending

element subjected to intermediate external and deflection loads. The correspond-

ing element of DDo

or

is as follows:

b b2(?a-b)
6F, iDZ%Olj = _ COS (Z COS_ + sin (x sin _ if agb

Da° a a2 (3b -a )
" -- 6Elij EAcos_ cos_ + .... sln_ sin_ i_b>a

The matrix eT contains element deformations resulting from heating, plastic-

ity, creep, etc. For example, suppose that the tensile element of Figure 9 (a)

has been assigned the ith element force, as shown. In (b) the temperature of the

element is increased an amount ZLT in the Jth analysis condition. The therz%al de-

formation is then e T = G L_, where G is the coefficient of expansion. The
iJ

matrix elements eT can also represent bending thermal deformations of bars heat-
Ij

ed unequally on the two sides, or any other kind of a thermal deformation. When

the eTi represent plastic or creep deformations, they either must be known, as
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they could be in a statlcatly determinate structure, or they must have been com-

puted in a previous cycle of some kind of iterative process.

The Matrix eAT contains displacements of the dur_ay deflection loads acting

directly upon the element, resulting from heating, etc., when the element reactions

are not displaced parallel to themselves. Figure 10 shows the element of Figure

9 with an intermediate dummy deflection load. The intermediate thermal deformation

iS elkT = _ aZkT.
lj

The matrices _D and f_ contain displacements of the statically determinate

and redundant reactions, respectively. The elements of these matrices are posi-

tive when the corresponding support displacements have the same sense as positive

values of the reactions acting upon the structure.

Equation (27) provides an alternate, more accurate, but somewhat more cumber-

some means of calculating deflections. In this equatlon_ FA, XA, and RD& are ma-

trices containing element forces, redundants, and statically determinate reactionsp

respectively, in the uncut structure resulting from unit values of the dummy de-

flection loads. The equation can be shown to be mathematically identical to equa-

tion (26).

COMPUTER PROGRAMS

The calculations are performed on an IBM 709 computer. The only "709" pro-

gram written specifically for the Maxwell-Mohr method is called "Matrix Generation".

This program accepts, as input, coordinates and directions numbers which define the

degree of freedom and force vectors appearing on the free body diagrams. The di-

rection numbers have previously been computed from the coordinates by an auxiliary

program. Thus, the only numerical input prepared by the analyst for this phase is

a table of coordinates. The program then generates the elements of the matrices

mpp, mps , Px ' Px ' Po ' Po 'msp' mss' Px ' Px ' Po , and Po by means
pp ps pp ps sp ss sp ss

of equations (i) to (4) of Table i.

All the rest of the calculations, as required by equations (5) to (26), are

performed _rlth the aid of a general purpose interpretive routine called the "Tape
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Matrix Compiler". This routine essentially permits the analyst to write his own

prGgrams for matrix operations. Matrice_ of member flexibilities, loads, thermal

_formatlons, and support displacements, and certain extractor matrices, are in-

put. The machine outputs the unknown forces and deflections of the structure.

The compiler is also used to perform additional operations not covered by

equations (5) to (26). These auxiliary operations can include transforming the

redundants to improve conditioning, and the modification of member flexibilities,

including the complete removal of members.

The Joining of structures to form larger structures is accomplished by the

baaic program, comprising equations (i) to (26).

A program under development# called the "Structure Cutter", permits the

machine to select its own redundants optimized to yield well-condltioned equa-

tions. The capabilities of the Structure Cutter are briefly discussed in a later

paragraph.
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ANtdXSISPROC L_UR ES

IDEALIZING THE STRUCTURE

The actual structure is replaced by an idealized discrete structure

consisting usually of bars and panels. In general the bars can carry tension,

torque, two components of bending moment, and two components of shear. The

panels can carry shear and biaxial tension. In the most Generally useful

idealization, bars are considered straight between Joints, e_d panels carry

only shear. However panels are permitted to be _. Th±_ al2.owance for

panel warping improves the accuracy of the analysls_ because Joints of the

idealization can lle on the true contour of the actual stzmcture. Furthermore,

warping simplifies the input, because there are few if any derived coordinates.

The meaning of the term "derived coordinates" is explained later.

Panels should be rectangular if possible, trapezoidal if not rectangular,

or at least nearly trapezoidal. Panels that almost come to a point should be

avoided. Triangular panels should probably be removed# leaving a triangular

framework of bars.

A problem of structural idealization concerns the question of the attachment

of shear panels to bars. Two methods of attachment are considered. In the first

method, panels are attached to bars at the midpoints of panel edges, as shown at

"A" of Figure 12. In the second method, the attachment is continuous, as shown

at "B", and the assur_ption is made that load in the adjacent bars varies linearly

between joints.

Figure ii shows a set of skin-stringer panels, rigidly supported at infinity.

The panels have symmetry about the X-axis_ the stringers are equally spaced and

have constant area, all the stringers are equally stiff, and the sheet thickness

is constant. Transversly the panels are assumed to be stiffened by a continuum

of infinitely rigid bars. Axial loads are applied to the _3 strincers at X = O.

The exact solution of the strin{_er loads and pan_t shear flo_rs in the struc-

ture was obtained. The structule _lau also a_alyzed by the _'I9_well-_bhr method,

for the idealization shown in i_it;urc 12. At X = 80, conditions are ez_entlally

the same as they are at Infinitly°
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Two digital solutions were obtained. In the first solution, panels were

assumed to be attached to bars at panel mld-polnts only. Under this assumption,

the load in a bar is constant, but can Jump _ruptly at Joints and panel m/d-

points. The flexibility matrix corresponding to this assumption is dia6ona!.

In the second solution the load in the bar is assumed to vary linearly

between Joints. The flexibility matrix in this case is not diagonal.

The comparison of the three solutions for stringer loads is given in Table

2. The results for methods 1 and 2 are followed by the percent errors in pa-

rentheses. The comparison for shear flows is given in Figure 12.

Stringer_X

Number k k

Table 2 Stringer Loads

0 20 40 60 80

Exact 0 .1470 .1889 .1987 .1996

Method 1 0 (0) .1446 (-2%) .1869 (-1%) .1970 (-1%) .1988 (-0%)

Method 2 0 (0) .1344 (-9%) .1885 (-0%) .1986 (-0%) .1996 (0%)

2

Exact 0 .2015 .2030 .2007 .2002

Method 1 0 (0) .1925 (-4%) .2020 (-0%) .2008 (0%) .2004 (0_)

Method 2 0 (0) .1864 (-8%) .2060 (1%) .2005 (-0%) .2001 (-0%)

3

Exact 1.0000 .3031 .2152 .2029 .2005

Method 1 1.O000 (0) .3258 (7%) .2221 (3%) .2044 (1%) .2017 (1%)

Method 2 1.0000 (0) .3584 (18%) .2110 (-2%) .2018 (-1%) .2004 (-0%)

The comparisons show that the "panel mid-point method" gives greatest accuracy.

The fact should be noted however that this method gives somewhat less accuracy than

the second method for the deflection of a cantilever thin web beam, idealized as

shown in Figure 14. Here the accuracy of the deflection computed by the first

method depends on the number of bays and is satisfactory for four bays. Both

methods give correct cap loads and shear flows for any number of bays.

Since the "panel mAd-point n_thod" is the simplest, and seems to be the

most accurate s at least for stresses, it appears to be preferable to the second

method.
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A distinction is made between "defining" and "derived" coordinates. This

distinction is delaonstrated in Figure 15, which shows a pin-Jointed truss lying

in the X-Y plane. _[cl_er AC is assumed straight. The geometry of the truss

therefore rm_y be considered to be defined by the X and Y coordinates of points

A, B, and C, and the X coordinate of D. The coordinate YD can be derived from

on the assumption that AC is straight. The coordinate YD is therefore a

derived coordinate, and the others are defining coordine_es. Defining coordi-

nates should be input with an accuracy of about six decimal places to avoid

contradictions between them and the assu_?ions upon %rhieh they are derived,

within the machine. Because of this acc_iracy requirement; derived coordinates

should be avoided.

A _arped shear panel cannot be in equilibrlumunder the action of shear

forces alone, as Figure 16 demonstrates. The shear forces shown in the plan

View all have downward components in the edge view. The panel can be put into

equilibrium _ith the addition of two forces at opposite corners, as shown in

the perspective view of Figure 17. This figure also shows principal and sub-

ordinate force numbers_ and subordinate degree of freedom vectors, which can

be assi_ed to permit the machine to calculate the subordinate forces in terms

of their principals. The warping forces are approximately normal %Q the p_lel.

The reactions to the warping forces are assumed to act on Joints.

_ny structures contain warped panels which cannot be flattened in the

idealization without seriously compromising the accuracy of the solution.

Furthermore, the flattening process is usually more trouble thaa accounting for

the warping.

CUT_IHG THE STRUCTURE

Box structures, like wings, composed of bars in tension and panels in shear s

tend to be better conditioned, because they are stiffer, than fuselage-type

structures which contain flexible rings. For structures which are i_lerently well

conditioned, and yet which may offer cutting difficulties because of unusual

features, the "building method" is a useful procedure.

In the buildin G method, a unit of the structure _own to be statically

determinate is selected, and the stm,cture is built from this unit by adding

other statically determlnato unlts. The members _ich are omitted lu the process

are the redundants.



Figure 18 (a) sho_;5 the uncut structure, (b) and (c) s} sta6es in the

building method and (d) sho_;s the final cut structure. Two panels and a re-

action are redundant. In the process) the use of "temporary reactions" may

be expedient. These reactions can be replaced by the actual reactions at the

completion of the process.

The following e}_ression is convenient for checking the degree of redundance

of a structure cor.,Dosed of shear panels

n -b +p + r - 2J2 - 3J3, where b

P

r

Je

J3

and axially loaded bar_

- the number of uncut bar_

the number of uncut pmnels,

the n_mber of reactions)

the number of two constraint Joints,

- the number of three constraint Jointss

For a statically determinate structure) n _ O. The expression, with n _ O, is

a necessary but not a sufficient condition for static determinacy. For the

structure of Figure 18, n _ 28 + 14 + 6 - 2 x 0 - 3 x 16 - O.

DIAGRAI_

The following diagrams are utilized: (1) a general view of the idealized

structure with the Joints numbered consecutively beginning with one) (2) a set

of free body diagrams) and (3) diagrams showing the element forces.

The free body diagrams have been described in the section on matrix formu-

lation, and Figure 3 shows a typical diagram for statically determinate forces.

The only feature of these diagrams not already mentioned are the free body numbers)

shown enclosed in squares in Figure 3. The machine uses these numbers to associate

forces with their corresponding degrees of freedom.

The element force diagrams show element reactions and element forces I the

latter being numbered consecutively beginning with one. The statically determi-

nate forces and redundants should be chosen so that each element force is identi-

cal with either a statically determinate force or a redundant, so that the elements

of the N and Exmatrices consist only of l's and O's.

LOAD SHEll'S

D:_t_ is input on three dii'ferent fo1_m_ts I as fol_]o_s: the coordinate table_

the vector description tables, ui_,lthe r_tl-ix lo_d sheet.
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The coordinate table is a list of Joint numbers with their associated X,

Y, and Z coordinates. With the aid of an auxiliary program, the machine com-

putes a table of direction cosines of vectors defined by point pairs of the

coordinate tables. The point pairs are specified by the analyst on a separate

load sheet. The au×Jliary program can also compute the direction cosines of a

vector defined as the cross product of two other vectors each in turn defined

by point pairs desiumted by the analyst. The vectors for which direction

consines are calculated include most, or all, of the vectors which appear in

the analysis. Direction nmnbers of additional vectors can be hand input if

necessary. The machine sorts the computed direction cosines according to the

defining points, and assigns each set of X I Y, and Z direction cosines a serial

number •

The vector description tables are of two types. On the type 1 table the

following information is input for each vector: the vector serial number; the

type, whether angular or linear; the sign; the number of the free body upon

which the vector acts; the number of a point on the line of action of the vector;

and the serial nun_er of the direction of the vector. Each vector is listed

only once in the type 1 load sheets. However most of the force vectors appear

more than once on the free bodies_ and an entry must be made each time a vector

appears. These additional entries are made on the type 2 tables which have

provision only for vector serial numbers_ signs, and free body numbers. The

type 1 and type 2 tables are filled out for the four kinds of degree of freedom

vectors, and the six kinds of force vectors mentioned previously.

The matrix load sheets contain spaces for the matrix elementsj and for

the row and column numbers corresponding to each element. The matrices N# HX_

He, C&, D, DFO , D_O , eT, e2_ _ _D' AX and _ are input on these sheets. Occasion-

ally some elements of the K ° matrix also are hand input.

Ordinarily only the matrices N, HX, He, CA, D and _ are required, and of

these _mtrlces N, HX, He and C A should contain only l's and O's. Thus the only

forLz_ts which contain numerical input are the coordinate table, the flexibility

nmtrix D, and the lo-_d matrl:: _. Therefore a problem which has been set up for

a civcn set of coordinates 3 fl _::Ibilities, and e_ternal load can be solved for

nc,z coo_]iI_tcs, llc:[ibllft[ _s, c'._d lo:_.d:_by InputtJn_ only three t:,b]cs. These



tables represent the mininmmpossible input for the problem. Therefore a given
set-up, say for a fuse!a<_esection, can be used manytimes for a variety of
fuselage analyses, and the set-up essentially becomes,in itself, a general
programfor fuselage problems.

CHECKS ON THE Obq'PUT

The equilibrium checks I made by writing extra equations of equilibrium,

have been mentioned. Two other important types of checks are the simultaneous

equation checks and the symmetry checks. Simultaneous equation checks are made

on the solutions of both the equilibrium and the continuity equations by sub-

stituting the results into the original equations. A symmetry check is made on

_xx' which must be symmetric by Maxwell's law. A similar check is t_ade on the

deflection matrix A, for rows and columns which correspond to identical unit

deflection loads and external loads.

IMPROVING THE COndITIONING

Naturally every effort should be made at the beginning to secure well-

conditioned equations. The familiar rule is that redundants should be chosen

which are small compared to other forces in the structure. The rule can also

be stated as follows: in the cutting process the structure should lose as

little stiffness as possible. For example, a good choice of redundants for a

fuselage frame is the insertion of three hinges. A complete cut at one point

leaves the frame very flexible.

A second device is to break the structure into statically indeterminate

substructures. The substructures are then cut and analyzed, after which they

are Joined to form the original structure, as discussed in a later paragraph.

At each stage of this process the redundants are relatively few in nun_er, and

generally well conditioned.

A third device is the utilization of orthogonal solutions derived from the

theory of elasticity for geometrically regular bodies _hich resemble the struc-

ture at hand. This process has been thorouchly discussed by Argyrls.

JOII[IHG SUBSTI_UCTUR_

In this process the structure is broken, by cutting redundants, into sub-

structures, which re_muin Joined together by other forces which can be computed
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from statics. Thus the cut st1_cture can be regarded as , statically determinate

structure consisting of statically indeterminate elements. Figure 19 shows a

DC-8 wing-pylon intersection which has been broken into two substructures by this

method. The figure shows statically determinate forces only. The other Joining

forces, which are redundants, are shown on a separate sheet. Figures 2a and 2b

show details of the idealized substructures.

After the structure has been cut into subst_Ictures, each of the substructures

is also cut and analyzed in detail, for unit _alues of the external loads, which

include the Joining redundants. In part_cu!ar the deflections of the substruc-

tures, at points where they have been cut apart, are calculated. The analysis of

each substructure utilizes the basic program s n_ the equations of Table 1.

After the substructures are analyzed, they are Joined to form the original

structure by another application of the basic program and equations. In this

process free body diagrams, like figure 19, are drawn. Element force diagrams

are also prepared. Element reactions for the substructures, considered as

elements of the original structure, must be identical with the statically de-

tern_nate reactions that were utilized in the detail analysis of the substructures.

This requirement is necessary because the elements of the flexibility z_trices

D, DFO , DfkF, and D_O are extracted from the deflection n_trlces A, calculated for

each of the substructures. The extraction is accomplished with the aid of ex-

tractor matrices consisting of l's and O's and the tape ,:_trlx co;_iler.

DISCONN'JCTING A7_ FLI_XIBILITY MODIFICATION

The and

Best _14] , for modifying flexibilities _th the aid of arbitrary element defor-

mations after the redundants have been co_uted, has two important applications.

First the effect of changing the sizes of a few members upon the stress distri-

bution can be determined with a rainimum amount of calculation. However the method

becomes inefficient when the number of elements to be modified becomes equal to

or greater than the number of redundants. In this case a new flexibility matrix

should be input. Second, the notion of filling in cut-outs, like fuselage doors I

and later removing them, is important, because the process of cutting the struc-

ture is greatly simplified when cut-outs are not present, and the equations are

likely to be better conditioned. However, more zmchlne capacity is required.
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Members can also be removed by making them more flexlb]_:, say on the order

of 1,0001000 times, than other me_)ers of the structure. This approach only

works when the forces being reduced to zero are redundants. Otherwise the

continuity equations tend to be linearly dependent.

THE STRL_TURE CUl'fI_

A method has been devised for having the machine cut the strut ture. In

this approach no distinction is ,_de between statically detezmlinate and re-

dundant forces when the problem is set up. The ntur_ber of unknowns in the equi-

librium equations generated by the _h%ehinc then exceeds the number of equations.

By a process of selecting columns of the rectanglalar n_itrlx of coefficients of

unknowns in these equations, the machine chooses a well-conditioned oquare matrix.

The unknowns which correspond to the colulans of this nuntrlx are the statically

determinate forces, and the ren_ining unknowns are the redundants. The choice

of columns is influenced by weighting factors which reflect the stiffness of

the members of the structure.

Figure 20a shows a statically indeterminate stm;cture. Figure 20b shows

the same structure as it was cut by the _%chine.

SIMPLIFIED INPUT

A new program called the "Redundant Force Method" is being developed. This

program Is basically the same as the method described previously, but the new

method incorporates a number of improvements which eliminate the need for pre-

paring free body diagrams, and reduce the input to a minimum. In effect the

machine automatically cuts the structure (utilizing the "Structure Cutter"),

breaks the statically determinate structure into free bodies, writes and solves

the equations of equilibrium, and writes and solves the equations of continuity.

A certain penalty in additional im%chine time is involved, however the new program

is expected to be especially useful in the rapid solution of prellminary design

problems for which a rough idealization is satisfactory, and which cannot be

solved without a large error by elementary methods.

IIOI[LIIH'I&R PROBI I_,t_

Althoug)_ tnls subject is beyond the scope of the present paper, some mention

should be made of the applications to the nonlinear problems involved in ca/culatlng

the effects of plasticity and creep upon the behavior of the stx_icture. The approach
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to these problems has been through the use of various step-by-step, or Iterative,

procedures. In all such procedures the question of convergence is of primary

Importance_ because the rate of convergence can be fast or slow, or the process

can be divergent. Rapid convergence is necessary, because a large amount of

calculation per cycle is required even for a structure of moderate size.

A method of calculating stresses and deflections in the presence of plasticity

is given in reference 6. The method utilizes the rapidly convergent Newton-Raphson

procedure for solving nonlinear simultaneous equations. Agree_u_:_t with test results

is demonstrated. Reference 7 presents an approach based on the use of fictitlou8

loads which appears to require a minimumamount of c¢.w?utaticn per cycle.

A step-by-step application of the Maxwell-Mo_ a_?2_is to the creep problem

is under development. This work is expected to provide a means of computing the

history of stress and deflection of a statically indeterminate structure subjected

to time dependent load and the_nal inputs.
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cOMPARISON WITH T_T RESULTS

Comparisons between analysis and test results obtained at the NASA and

during the DC-8 static test have been n_de. The I_ASA comparisons were ac-

complished in the period from June 1956 to Septelr_er 1957. In all the numeri-

cal analysis, the midpoint idealization for shear panels was used.

The comparison for axial stresses measured in the cantilever circular

cylinder of Figure 1 has been mentioned. Figure 21 shows the analytical and

test results for frame bending moments and skin shear flows in the same cylinder.

The results of the Maxwell-Mohr analysis are in very close agreement also with

results obtained by the method of Hoff [87 , as reported in reference 9.
L _

Figures 22, 23, 24, and 25 show comparisons for a swept box tested at the

NASA, and reported in reference i0 • The box was of rectangular section and

had a total of 32 stringers. In the figures the heavy solid lines indicate

idealized stringers and bulkheads, while the dotted lines indicate bars obtained

by lur_)Ing skin in the chordwise direction. The analysis would not yield sat-

isfactory approximations for shear flows in the covers until these bars were

inserted. Polsson's ratio was accounted for in the triangular area at the root.

In the bendin_ test, the characteristic peaking of axial stress at the rear spar

is correctly predicted, as is the reversal of shear flow in the front spar web.

Figures 26 and 27 show comparisons for cylinders with cutouts subjected to

bending and torque respectively. The tests are described in references ll and

!2. As the figures show, more idealized stringers were inserted in the upper

side than in the lower, because the cutout at the top perturbs the stress field,

and requires finer lumping. Frame flexibility was taken into account. The

resulting agreement is excellent. However there is one shear panel at the

corner of the cutout which, in the bending case, does not have approximately a

uniform shear flowj as assumed. At one edge of this p_nel the shear flow, not

shown in the figure, is considerably hi6her than the w_lue at the panel center.

The only way to cover this concentration without c3In_i to a finer lumpin6 is

with an empirical factor.

Figure 28 s]low_ a co_J,pari:_._n of _azured and calculated stresses for a

station in the root recion of the I)C-8 _r]ng. Th(._ an_lysis which yielded the

calculated rc_ultu is discu:_';_d in a l_tcl :;c_tion.
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APPLICAT!OI_

Themethodhas been extensively applied in the analysis of Jet transport
components;missile parts, including fins and body components;and a supersonic
low aspect ratio wing. _ny of these analyses included calculations of thermal
stress and deflection.

The wlng-lklselage intersection wasone of the prima_y prob!e_%s in the stress

analysis of the DC-8. The stress distribution w_s co._plicated by the existence

of wing sweeps an _uxiliary spar, landing gear cutouts in the Io_er par% of the

fuselage behind the wing, a keel beam ru._,-!ng _long the -eur_elacc e_nterline

below the floor, and other details. %'he _rob3em _a-. a_,proache/ by first nmklng

an analysis of the entire region, inclu,lit_'g a fairly _e%_1.!ed :%)):-esentation of

the fuselage, and a simplified idealiz_tlon of the _:_-', _r[,in the results of

this analysisj reaction forces between _:i'_.gand fu_'_h_g_) were :_eterntined. A

detailed wing root analysis was then made, in _:hich q};cze re.'_ction forces were

applied.

Figure 29 is a diagram of the ideali[_ utlucture used in the detailed wing

analysis, showing the three spar constructi_ _ _$h the auxiliary spar which

supports the main landing gear. The idealization had the correct sweep; dlhedral;

Incidence and taper, both in plan-form and in thickness; and the airfoil sections

were accurate. However, twist was removed to flatten skin panels. There were

113 redundants and 300 element forces. The first co_lete calculation based on

this idealization was finished in March 1956. Had the Job been done a little

later, panel warping and twist would have been considered.

The idealized structure for the tail-fuselage intersection is shown in

figure 30. The idealization included a portion of the vertical tail, and a

stub of the all-movable horizontal surface. Some of the sections were stiffened

by frames like the one sho_m in section A-A; others had partial bulkheads. The

Joints of the idealized structure lay on the true contour, and panel warping was

accounted for. The foreward and aft parts of the structure were analyzed sepa-

rately and then Joined at section A-A. The first complete calculation was

finished in September 1957.

Deflection influence coefficients calculated for both the wing and the

f,4z(-l:J_c t_il _ectlon were used in flutter analysis.
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An analysis of the fuselage nose section, including the cockpit enclosure_
wasperformed. Theproblemwascomplicatedby the presellce of cabin pressure_
and the fact that the pressure envelopewasirregular becauseof the e.<istence
of the unpressurized nose-wheelwell below the floor. Themembersof the cock-
pit canopyalso causedaddeddifficulties_ becausesomeof themwere desiL_ed
to carry tension, bendingmomentsabout two axes, and torqs_e,and they were so
analyzed. The structure wasanalyzed in two separate sections_ which were then
Joined. After Joining3 the technique of virtu_l discor_n_ctingloads wasc_iployed
to calculate the effect of door cutouts.

Figure 2a and 2b showi_heidealized structure for the Conwayoutboardpylon.
The structure incorporates a bottoming strut_ shownin figure 2a. The bottom_[ng

of this strut, after a certain amount of load has been applied, changes the stress

distribution, and causes a nonlinearity, which was t_ken into accoumt.

Figure 31 shows the structure of the JT-4 ejector-reverser. The structure is

irregular; has large cutouts for the reversing buckets; incorporates members sub-

Jected to tension 3 bending about two axes, and torque; and is subjected to large

thermal gradients. The JT-3 and Conway ejectors are similar. Results from the

J2-3 analysis became available _rlthin a period of two months. The same set-up

was then utilized in the analysis of the JT-4 and Conway ejectors, which have

different sizes_ shapes_ and stiffnesses. The Conway ejector analysis was com-

pleted in final form ready for submission to the FkA in one month's time. Spring

constants for the ejectors were calculated and shown in proof test to be correct

within the experimental error.

l_nerous applications to low aspect ratio wing and missile structures have

been m_de, but these projects are classified and cannot be di::cussed. However

the foregoing applications and experimental verification_ have demonstrated that

the matrix equations and the cor_uter program are sufficie_tiy general to dual

with any linear discrete st_-ucture. 1_ssile and s_pcrsonic airplane structures

are no exceptions. Thus the low aspect ratio smllti-spar wing-fuselage st1_cture

of figure 32 can be analyzed, with all the detail sho_a_ and more, with Joints on

the true contour, for load and ther_l stress. Deflections, and a deflection

influence _trix useful in flutter analysis cul_o can be output.

_5



COHCLUSION

A procedure for structural analysis, co,_rising a matrix formulation of

the equilibrium and _xwell-Mohr continuity equations, and an associated digital

computer program, has been developed. This procedure is applicable, in its

basic form, to any linear discrete structure. The method has been fully veri-

fied by comparison with test results, both in the laboratory and in proof test_

and it has been shown to be a practical analysis tool in numerous applications.

Procedures of this kind, several of which have appeared in the last few

years, represent a break-through in the art of stress analysis. These methods

permit the practical calculation of stresses in complicated shell structures

in rigorous accord with basic physical principals. This rigor is necessary,

because approximate methods widely used in the past can be in error by large

amounts. These errors are alleviated somewhat by stress redistribution above

the yield, but below the yield they represent stress concentrations which cause

premature fatigue failures. Above the yield premature static failures can occur

in spite of the redistribution.

In the past, serious consequences of these errors have been avoided by

extensive testing. Some testing will always be necessary, but it is expcnsive,

even compared to the cost of operating a large digital computer. In the future,

testing expense will increase as airframes become larger, and the additional

complication of thermal gradients is introduced. Therefore the need for rigorous

methods is increasinG.

Santa Hc_nLca_ Ca_li__._ Se_telr_ber 17, l<_G
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